Hydrothermal origin of halogens at Home Plate, Gusev Crater
نویسندگان
چکیده
[1] In the Inner Basin of the Columbia Hills, Gusev Crater is Home Plate, an 80 m platform of layered clastic rocks of the Barnhill class with microscopic and macroscopic textures, including a bomb sag, suggestive of a phreatomagmatic origin. We present data acquired by the Spirit Mars Exploration Rover by Alpha Particle X-Ray Spectrometer (APXS), Mössbauer Spectrometer, Miniature Thermal Emission Spectrometer (MiniTES), and Panoramic Camera (Pancam) for the Barnhill class rocks and nearby vesicular Irvine class basalts. In major element concentrations (e.g., SiO2, Al2O3, MgO, and FeO*), the two rock classes are similar, suggesting that they are derived from a similar magmatic source. The Barnhill class, however, has higher abundances of Cl, Br, Zn, and Ge with comparable SO3 to the Irvine basalts. Nanophase ferric oxide (np ox) and volcanic glass were detected in the Barnhill class rocks by Mössbauer and Mini-TES, respectively, and imply greater alteration and cooling rates in the Barnhill than in the Irvine class rocks. The high volatile elements in the Barnhill class agree with volcanic textures that imply interaction with a briny groundwater during eruption and (or) by later alteration. Differences in composition between the Barnhill and Irvine classes allow the fingerprinting of a Na-Mg-Zn-Ge-Cl-Br (±Fe ± Ca ± CO2) brine with low S. Nearby sulfate salt soils of fumarolic origin may reflect fractionation of an acidic S-rich vapor during boiling of a hydrothermal brine at depth. Persistent groundwater was likely present during and after the formation of Home Plate.
منابع مشابه
Pyroclastic activity at Home Plate in Gusev Crater, Mars.
Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarsegrained lower unit lies under a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic o...
متن کاملIron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover
[1] Spirit’s Mössbauer (MB) instrument determined the Fe mineralogy and oxidation state of 71 rocks and 43 soils during its exploration of the Gusev plains and the Columbia Hills (West Spur, Husband Hill, Haskin Ridge, northern Inner Basin, and Home Plate) on Mars. The plains are predominantly float rocks and soil derived from olivine basalts. Outcrops at West Spur and on Husband Hill have expe...
متن کاملIron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mssbauer instrument on the Spirit Mars Exploration Rover
[1] Spirit’s Mössbauer (MB) instrument determined the Fe mineralogy and oxidation state of 71 rocks and 43 soils during its exploration of the Gusev plains and the Columbia Hills (West Spur, Husband Hill, Haskin Ridge, northern Inner Basin, and Home Plate) on Mars. The plains are predominantly float rocks and soil derived from olivine basalts. Outcrops at West Spur and on Husband Hill have expe...
متن کاملHydrothermal Alteration Mineralogy of Home Plate: Thermochemical Constraints for Their Formation
Home Plate is a plateau in the Columbia Hills of Gusev Crater [1]. It is a layered sequence of clastic rocks with alkali basaltic composition. Based on stratigraphy, structure, sedimentology, mineralogy, and bulk chemistry it is interpreted as pyroclastic deposit and thought to be extensively hydrothermally altered [1-5]. The hydrothermal alteration is presumed to be of high and low temperature...
متن کاملAlteration mineralogy of the Home Plate and Columbia Hills – formation conditions in context to impact, volcanism, and fluvial activity
The Mars Exploration Rover Spirit investigated the igneous and alteration mineralogy and chemistry of Home Plate and its surrounding deposits. Here, we focus on using thermochemical modeling to understand the secondary alteration mineralogy at the Home Plate outcrop and surrounding Columbia Hills region in Gusev crater. At high temperatures (300 °C), magnetite occurs at very high W/R ratios, bu...
متن کامل